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A B S T R A C T   

Foodborne diseases are still a major global health and economic burden, and are mainly caused by viral path-
ogens, such as human norovirus and hepatitis A virus, which may remain infective for long times on food contact 
surfaces and on produce. The strategies of viral inactivation applied in the industry are not generally suitable for 
delicate foods such as berries. Brief exposure to high-intensity white light (UV to IR) has been shown to inactivate 
many bacteria. The effectiveness of this treatment against foodborne viruses on fresh produce is largely un-
known. We show that pulsed light treatment causes a moderate drop in the luminosity (L*, which ranges from 
bright (high) to dark (low)) of blueberries (to 36.31 ± 0.99 from 42.47 ± 1.17) and affects the luminosity of 
lettuce slightly but does not affect the appearance of strawberries, blackberries or raspberries. Hepatitis A virus 
and murine norovirus 1 are thus reduced by 2 log cycles. Viral inactivation on blackberries was less effective. 
These results will help food industries evaluate the suitability of pulsed light disinfecting technology for specific 
fruits and vegetables.   

1. Introduction 

Foodborne illness is currently estimated to affect 600 million persons 
per year, causing 420,000 deaths as well as costing 110 billion USD in 
lost productivity and medical expenses (World Health Organization, 
2020). Although food hygiene standards are getting more and more 
rigorous, outbreaks of viral foodborne illness are increasing in frequency 
(David et al., 2007; Government of Canada, 2016; McIntyre et al., 2012; 
Smith et al., 2019; Swinkels et al., 2014). The two most frequent viral 
causal agents are human norovirus and hepatitis A virus (HAV) (Thomas 
et al., 2015; World Health Organization, 2015), both are known to 
persist for long times on food contact surfaces and to resist most com-
mon disinfectants (Bae et al., 2014; Cook et al., 2016, 2018; Sattar et al., 
2000). Vegetables and fruits and especially berries have been involved 
in several incidents of norovirus or hepatitis A transmission (Enkirch 
et al., 2018; European Food Safety Authority, 2013, 2014; Scavia et al., 
2017). Frequent exportation of these foods has created an urgent need 
for effective means of inactivating these viruses directly on the product 
during processing. 

To limit the risk of viral contamination, food industries generally rely 
on good hygienic practices and conventional inactivation methods such 

as chemical disinfectants, heat treatment or UV radiation. However, 
these methods are often not suitable for delicate fruits and vegetables. 
One technology that appears to be effective without degrading product 
quality is pulsed light treatment, an inactivation method based on 
exposing the food product to bursts of high-intensity white light 
(wavelengths ranging from 200 to 1100 nm and hence including UV) 
lasting microseconds (Elmnasser et al., 2007). This method has been 
accepted by the US Food and Drug Administration (FDA) since 1996 (U. 
S. Food and Drug Administration, 1996) and strict regulations are in 
place limiting pulse duration (2000 μs max) and fluence or total energy 
absorbed per unit of product surface (12 J/cm2). 

Pulsed light has been tested on juice, syrup, milk (Rowan, 2019), 
water (Vimont et al., 2015), strawberries, blueberries, and raspberries 
(Huang and Chen, 2015; Huang et al., 2017) and other products. Studies 
of its effect on sensory properties are limited. Browning has been shown 
to occur on tomatoes (Valdivia-Nájar et al., 2018), in apple juice (Muñoz 
et al., 2012) and on mushrooms (Oms-Oliu et al., 2010), eggs (Manzocco 
et al., 2013) and ham (Wambura and Verghese, 2011). On the other 
hand, pulsed light has also been shown to slow down the ripening of 
tomatoes (Dhakal and Baek, 2014; Scotta et al., 2017). Its impact on the 
sensory properties of berries is largely unknown. 
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The lethality of pulsed light for bacteria such as Escherichia coli O157: 
H7, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Sal-
monella and others has been shown (Elmnasser et al., 2007; Ghasemi 
et al., 2003; Rowan et al., 1999). Its effects on viruses have been studied 
much less (Huang and Chen, 2015; Huang et al., 2017; Huffman et al., 
2000; Jean et al., 2011; Lamont et al., 2007; Pexara and Govaris, 2020; 
Roberts and Hope, 2003), especially in foods. We and others have shown 
previously that it can inactivate human norovirus surrogates, such as the 
Tulane virus (Huang and Chen, 2015; Huang et al., 2017) and murine 
norovirus 1 (MNV-1) in drinking water or sewage (Vimont et al., 2015). 
We have found barely any data on the use of pulsed light to inactivate 
viral pathogens directly on foods. The aim of this study was to investi-
gate the impact of pulsed light on food sensory properties such as 
texture, color, and weight and to measure the extent to which it can 
inactivate a norovirus and HAV on produce, namely strawberry, rasp-
berry, blueberry, blackberry, and lettuce. 

2. Materials and methods 

2.1. Pulsed light equipment and parameters 

A benchtop pulsed light system (Xenon, Corp. Wilmington, MA, 
model X-1100 LH-810/910) was used to apply all treatments. This 
model emits a spectrum between 200 nm and 1000 nm. The parameters 
were set as follows: 1 pulse lasting 546 μs was emitted at an intensity of 
830 J and 2700 V to produce a fluence of 0.72 J/cm2. Up to 16 pulses 
were emitted, all at intervals of 1186 ms. The most intense treatment 
was thus within FDA-approved limits (2000 μs pulse duration and total 
fluence of 12 J/cm2). The distance between the lamp and the fruit or 
vegetable surface was 7.5 cm. The effect of heat generation by the lamp 
was minimized by placing an icepack inside the device for approxi-
mately 1 min in between treatment. 

2.2. Berries and vegetables 

All berries (strawberries, blueberries, raspberries, blackberries) and 
lettuce were purchased as fresh as possible on the same day at a local 
supermarket and stored at 4 ◦C until the experiment. All samples were 
withdrawn randomly from their original container. Outer (dark green) 
and inner (light green) leaves of lettuce were treated separately. 

2.3. Effect of pulsed light on sensory properties of the tested products 

The foods were treated at fluences of 2.15 J/cm2, 6.44 J/cm2, and 
11.45 J/cm2. One set of experiment consisted of 10 blueberries, 5 
strawberry halves (symmetrical), 5 lettuce leaf squares of 2.5 cm2, 5 
raspberries or 5 blackberries were placed in the sample holder. Two sets 
of experiments were performed. Food characteristics were tested at 
room temperature. Color and/or mass were always measured before 
texture. Representative pictures were also taken from both sets of 
experiments. 

2.3.1. Color analysis 
Product color was measured on a CR-300 colorimeter (Konica Min-

olta Sensing Americas, Inc., Ramsey, NJ, USA). The color parameters 
were luminosity or L*, which ranged from bright (high) to dark (low), a 
(redness versus greenness) and b (yellowness versus blueness). Three 
measurements were taken per product, each at a different location on 
the sample. Blueberry color was measured in a closed chamber usually 
used for sugar and flour. 

2.3.2. Weight loss analysis 
All samples were weighed before and after treatment to measure the 

impact of a possible thermal component of pulsed light on product water 
content. 

2.3.3. Texture evaluation 
A TA-XT2 texture analysis instrument (Stable Micro Systems, God-

alming, Surrey, UK) was used with a Kramer shear cell. The basic cell 
was used for lettuce, raspberries, and blackberries, whereas the heavy- 
duty plate was used for blueberries and strawberries. Prior to any 
measurements, the loading cell and the force of the head part were 
calibrated, and the height of the cell was adjusted accordingly. 

2.3.3.1. Strawberries. The loading cell was calibrated with a 5 kg 
weight. Strawberries were cut in half symmetrically. Five halves were 
tested on the heavy-duty plate. A 1/4-inch aluminum sphere was posi-
tioned above the shoulder side of the strawberry. A compression test was 
then performed at a speed of 5 mm/s for up to 6 mm of penetration into 
the fruit. This protocol, adapted from a previous study (Ordidge et al., 
2012), gives the maximum force that the strawberry can withstand 
without tearing of the tissue. 

2.3.3.2. Blueberries. The loading cell was calibrated with a 5 kg weight. 
Ten blueberries were tested. The fruit was placed in an Eppendorf cap 
(used as a holder) on the heavy-duty plate. The maximum compression 
force test was performed with a 2 mm cylinder head at a speed of 0.8 
mm/s for penetration of up to 7 mm into the berry as described previ-
ously (Stückrath et al., 2008). 

2.3.3.3. Lettuce. The loading cell was calibrated with a 50 kg weight. 
Lettuce leaves were dried, cut into five 2.5 cm2 squares and laid out flat 
in the holder. The Kramer shear cell was positioned over the lettuce at a 
height of 25 mm and lowered 20 mm at a speed of 1.5 mm/s. This 
protocol gave the maximal shear force withstood by the leaf, based on a 
previous study (Rico et al., 2006). 

2.3.3.4. Raspberries and blackberries. The loading cell was calibrated 
with a 50 kg weight. Five raspberries or blackberries were used. The 
Kramer shear cell was positioned over the berries at a height 25 mm and 
passed through them (30 mm stroke) at a speed of 5 mm/s, giving the 
maximum shear force withstood by the berries, based on previous 
studies (Giongo et al., 2019; Sousa et al., 2007). 

2.4. Inactivation of HAV and MNV-1 using pulsed light 

2.4.1. Sample preparations 
HAV inactivation tests were performed with strawberries, rasp-

berries, and blackberries. All products were tested in triplicate. Testing 
of 9 strawberries (18 halves), 18 raspberries and 18 blackberries 
constituted one experiment. Three experiments were performed on 
separate days. Prior to any experiment, all berries were washed 3 times 
with distilled water and once with deionized water. With a sterilized 
scalpel, strawberries were cut in half, the bottom part (sepal side) of 
blackberries was removed to increase Petri adherence, and raspberries 
were left intact. Samples were then placed in sterile Petri dishes (cut side 
on the dish surface) 3 per dish (considered to be one sample once pooled 
together after viral recovery), 6 dishes per fruit, and were treated with 
UV light for 15 min under sterilized laminar flow hood to inactivate 
potential contaminating microorganisms. 

2.4.2. Sample treatments 
The treated samples were then exposed to 16 pulses for a total flu-

ence of 11.45 J/cm2. The same protocol was used for experiments with 
MNV-1 on the same food matrices at the same viral load as for HAV (30 
μL of suspension containing 105 pfu/mL). Cytopathogenic HAV strain 
HM-175, was obtained from the Bureau of Microbial Hazards, Health 
Canada, Ottawa, ON, and propagated as previously described (Mbithi 
et al., 1992). MNV-1 (ATCC VR-1937; https://www.atcc.org/products/ 
vr-1937) was purchased from the ATCC (Cedarlane, Burlington, ON, 
Canada) and propagated as previously described (Gonzalez-Hernandez 
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et al., 2012). The contamination process is as follows: 30 μL of suspen-
sion containing 105 pfu/mL was used to artificially contaminate each 
piece of fruits (3 per dish, total of 90 μL per dish, which equal one 
sample). Briefly, viruses were pipetted on the top shoulder of straw-
berries, on the tip of blackberries and on the tip of raspberries. All 
samples were allowed to dry for about 90 min under the flow hood 
before pulsed light treatment. 

2.4.3. Controls 
A contaminated Petri dish of fruit (1 per produce) with 30 μL of HAV 

suspension (105 pfu/mL) but not treated with pulsed light served as a 
positive processing control. The positive processing control was used to 
establish the maximal recovery of viruses per sample. An uncontami-
nated (30 μL of EBSS buffer) Petri dish of fruit (1 per produce) but 
treated with pulsed light served as a negative processing control. The 
negative processing control was used to 1) assess the potential impact of 

juice flow on our cell lines during plaque assays and to 2) evaluate if we 
contaminated our sample during pulsed light treatments. An extra un-
contaminated and untreated fruit dish (1 per produce) was left under the 
flow hood and served as a negative contamination control. All samples 
were also allowed to dry for about 90 min under the flow hood before 
pulsed light treatment. 

2.4.4. Viral recovery after pulsed light treatment 
HAV and MNV-1 were recovered from the berries using Earle's 

Balanced Salts Solution 1× pH 7–7.4 (Fisher Scientific, Ottawa, ON, 
Canada) as an elution buffer (Ansari et al., 1988), added to each Petri 
dish in 5 portions of 60 μL for a total volume of 300 μL. Since we had 3 
fruits per dish, this totaled 900 μL of elution buffer per type of berry and 
constituted one sample. The recovered buffer was diluted serially to 
10− 4 with PBS 1× (Corning, Tewksbury, MA, USA) for plaque assay. 
Positive and negative processing controls and the extra negative control 

Fig. 1. Impact of pulsed-light disinfecting treatment on the texture of berries and lettuce. Maximal compression force under different tested fluences withstood by (A) 
strawberry halves (n = 10) and (B) blueberries (n = 20) were measured using a Kramer shear cell with the heavy-duty plate. Maximal shear force under different 
tested fluences withstood by (C) lettuce outer leaf (n = 10), (D) lettuce inner leaf (n = 10), (E) raspberries (n = 10) and (F) blackberries (n = 10) were measured using 
a Kramer shear cell. Values are mean ± sd. 
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were also recovered with EBSS buffer using the same method described 
for HAV and MNV-1 samples. 

2.4.5. HAV propagation and plaque assay 
FRhK-4 cells (HAV strain HM host cells, Bureau of Microbial Haz-

ards, Health Canada, Ottawa, ON) were cultured in Eagle's minimal 
essential medium (EMEM, Wisent, St-Bruno, QC, Canada) with 10% fetal 
bovine serum (FBS, Wisent, Canada) and 1% penicillin/streptomycin 
according to a protocol published previously (Mbithi et al., 1992) with 
slight modification. Cells were brought to confluence in a T75 flask, 
counted, diluted, and plated in 12-well plates (Corning CellBind, 
Tewksbury, MA, USA) at 125,000 cells/well then grown for 24 h at 37 ◦C 
with 5% CO2 to confluence. They were infected with 300 μL of diluted 
viral elution and incubated for 90 min at 37 ◦C with 5% CO2 in accor-
dance with previously published protocol (Trudel-Ferland et al., 2021; 
Mbithi et al., 1992). Briefly, each well was then covered with an overlay 
mix and 1% agarose and the plate was incubated for 8 days at 37 ◦C with 

5% CO2. A negative control (PBS only) and a positive control (HAV 
stock) were run. All samples were tested in duplicate. 

2.4.6. MNV-1 propagation and plaque assay 
RAW 264.7 cells (ATCC TIB-71) were cultured in Dulbecco's Modi-

fied Eagle's Medium (DMEM, Wisent, Canada) with 10% fetal bovine 
serum (FBS, Wisent, Canada) and 1% penicillin/streptomycin. Cells 
were brought to confluence in a T75 flask, then counted, diluted, plated 
in 12-well plates (Corning CellBind, USA) at 850,000 per well, grown for 
24 h at 37 ◦C with 5% CO2 to confluence as described previously 
(Vimont et al., 2015; Gonzalez-Hernandez et al., 2012). They were 
infected with 300 μL of sample suspension (dilution), incubated for 90 
min at 37 ◦C with 5% CO2, overlaid with 0.8% low-melting-temperature 
agarose (Sea Plaque, VWR, Mississauga, ON, Canada) and incubated for 
about 72 h as described previously (Vimont et al., 2015; Gonzalez- 
Hernandez et al., 2012). Negative (PBS only) and positive (MNV-1 stock) 
controls were run. All samples were tested in duplicate. 

Fig. 2. Impact of pulsed-light disinfecting treatment on the weight of berries and lettuce. Percentage weight loss under different tested fluences of (A) strawberry 
halves (n = 10), (B) blueberries (n = 20), (C) lettuce outer leaf (n = 10), (D) lettuce inner leaf (n = 10), (E) raspberries (n = 10), and (F) blackberries (n = 10). Values 
are mean ± sd. 

E. Jubinville et al.                                                                                                                                                                                                                               



International Journal of Food Microbiology 364 (2022) 109529

5

2.4.7. Fixation and staining of cells and calculation of viral titer 
Infected cells were fixed with 3.7% formaldehyde in 0.85% saline for 

at least 5 h then stained with 0.1% crystal violet (Sigma, Oakville, ON, 
Canada) for 30 min to assay for HAV (Vimont et al., 2015) or with 1% 
crystal violet for 10 min to assay for MNV-1 (Gonzalez-Hernandez et al., 
2012). Plaques were counted, and wells with 3 to 30 were used to 
calculate viral titer in pfu per mL as 100 × the number / the plated 
volume (0.3 mL). The reduction in titer due to the treatment was 
calculated as log10 (C/S) where C is the titer of the positive control and S 
is the titer in the diluted sample suspension. 

2.5. Statistical analysis 

All statistical analysis was performed using GraphPad Prism 9 
(V9.1.0, GraphPad Software, San Diego, CA, USA). Multiple compari-
sons were performed with ANOVA followed by a Dunnett post-test 
(compared to untreated samples) for texture, weight loss and 
luminosity. 

3. Results 

3.1. Impact of pulsed light on the texture of berries and lettuce 

Pulsed light had very little effect on the maximal compression force 
that strawberries and blueberries could withstand (Fig. 1A and B) or the 
maximal shear force in the case of lettuce (Fig. 1C and D) and raspberries 
and blackberries, regardless of fluence. There was a slight but significant 
difference (p = 0.0351) in texture between untreated and treated 
strawberries, namely a softening at 2.15 J/cm2. Why this was not also 
the case at higher fluence is unclear. 

3.2. Impact of pulsed light on berry and lettuce leaf weight 

Weight loss percentage of berries and lettuce was analyzed pre- and 

post-exposure to different fluences. Our results show that there are no 
significant weight loss differences between PL-treated and PL-untreated 
berry samples (Fig. 2). However, a general weight loss of lettuce has 
been noted independently of treatments. 

3.3. Visual and color impact of pulsed light on berries and lettuce 

Pulsed light caused no apparent change in the appearance of 
strawberries, raspberries, or blackberries (Fig. 3A, E, and F). However, 
the treatment did darken the apical surface of blueberries (Fig. 3B). 
Some browning of lettuce was also noted, on both inner and outer leaves 
(Fig. 3C and D). 

As shown in Fig. 4, pulsed light treatment did not affect the lumi-
nosity of strawberries, raspberries, or blackberries (Fig. 4A, E, F) but did 
in the blueberry and lettuce cases (Fig. 4B, C and D). Blueberry lumi-
nosity was reduced significantly (p ≤ 0.05) at all three fluences, to 36.97 
± 0.67, 36.53 ± 0.77, 35.42 ± 1.52 from 42.47 ± 1.17. Lettuce suffered 
a smaller but significant loss when exposed to 6.44 J/cm2 or 11.45 J/ 
cm2. Blackberries were found significantly brighter after treatment at 
11.45 J/cm2, but this is not likely perceptible by the consumer. Based on 
these observations, blueberry and lettuce were not included in the viral 
inactivation experiments. 

3.4. Inactivation of foodborne viruses on berries by pulsed light 

Using the lamp at a fluence of 11.78 J/cm2 and 7.5 cm from straw-
berries and raspberries, pulsed light treatment reduced HAV titers by 
respectively 2.10 ± 0.08 and 1.97 ± 0.16 log cycles and MNV-1 titers by 
1.61 ± 0.38 and 1.89 ± 0.30 (Fig. 5A & B). Reductions obtained on 
blackberries were smaller (1.25 ± 0.57 and 1.37 ± 0.62). 

4. Discussion 

Pulsed light has been tested as a disinfecting agent on several food 

Fig. 3. Impact of pulsed-light disinfecting treatment on the overall appearance of berries and lettuce. Visual aspect under different tested fluences of (A) strawberry 
halves (n = 5), (B) blueberries (n = 10), (C) lettuce outer leaf (n = 5), (D) lettuce inner leaf (n = 5), (E) raspberries (n = 5), and (F) blackberries (n = 5). 
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matrices (Huang and Chen, 2015; Rowan, 2019). Its impact on sensory 
properties such as texture, color, taste, weight loss has been found 
negative or positive from one study to another (Dhakal and Baek, 2014; 
Muñoz et al., 2012; Scotta et al., 2017; Valdivia-Nájar et al., 2018). It 
can alter the texture of fresh produce such as mushrooms (Ramos-Vil-
larroel et al., 2012) and avocado (Ramos-Villarroel et al., 2013). At the 
fluences tested in our study, it appears not to affect the texture of berries 
and lettuce very much. This suggests that consumers would not likely 
distinguish between treated and untreated berries. In some cases, a 
texture stabilizer could be used to mask such changes (Bhavya and 
Umesh Hebbar, 2017). However, for fresh strawberries, differences in 
the distance from the lamp due to fruit size variability could cause 
product visual quality inconsistencies. This might be less of a problem 
with berries that are to be frozen, since they could be sorted by size, and 
freezing changes their appearance considerably in any event. The viru-
cidal effectiveness of pulsed light on frozen produce remains to be 

investigated. 
The physics of pulsed light includes a small thermal component 

(Bialka and Demirci, 2008; Huang and Chen, 2015; Luksiene et al., 
2013), which could decrease the water content of the food produce 
surface and hence the weight of berries and lettuce. In a study of fresh 
sliced tomatoes, the weight loss over time was greater in the pulsed- 
light-treated product (Valdivia-Nájar et al., 2018). The thermal 
component of the treatment certainly increases with proximity to the 
lamp and with exposure time and fluence (Bialka and Demirci, 2008). 
However, most studies that show significant heat release from pulsed 
light lamps involved fluences that exceeded FDA recommendations. 
Based on previous findings by our group (Vimont et al., 2015), we 
waited 1 min between exposures to limit the possible photothermal ef-
fect of the treatment. Under these conditions, weight losses of 0.5–1% 
reported previously for pulsed-light-treated blueberries (Cao et al., 
2017) did not occur. Storage conditions, berry seasonal variations, lamp 

Fig. 4. Impact of pulsed-light disinfecting treatment on the luminosity of berries and lettuce. Luminosity values under different tested fluences of (A) strawberry 
halves (n = 10), (B) blueberries (n = 20), (C) lettuce outer leaf (n = 10), (D) lettuce inner leaf (n = 10), (E) raspberries (n = 10), and (F) blackberries (n = 10). 
Luminosity (measured using a Konica model CR-300) ranges from 100 (white) to 0 (black). * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001. Values 
are mean ± sd. 
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distance and equipment configuration could explain these contrasting 
results. We nevertheless conclude that our photo-disinfection treatment 
did not have any impact on the weight of the berries and lettuce tested in 
our study. 

Pulsed light has been shown previously to affect the color of food 
matrices by changing the luminosity and/or the browning index 
(Charles et al., 2013; Fine and Gervais, 2004; Gómez et al., 2011; Ignat 
et al., 2014; Muñoz et al., 2012). However, it has also been reported not 
to affect the browning index and pH of juices (Muñoz et al., 2012). Our 
results on strawberries and raspberries are consistent with the very few 
studies of the impact of pulsed light on the color of these berries (Bialka 
and Demirci, 2008; Huang and Chen, 2015; Luksiene et al., 2013). A 
decrease of ~1 unit in the L value of blueberries has been noted at least 
once (Cao et al., 2017), which is again consistent with our results, 
although our decreases are greater, due likely to differences in experi-
mental conditions. 

The few studies of the use of pulsed light to inactivate viruses have 
focused mainly on suspensions in buffer (Lamont et al., 2007; Roberts 
and Hope, 2003) or food contact surfaces (Jean et al., 2011) and usually 
with fluences exceeding 12 J/cm2. Our group confirmed years ago an 
earlier study showing that one factor needing to be taken into consid-
eration is the potential presence of organic matter associated with 
berries, which reduces treatment efficacy in suspensions and on food 
contact surfaces (Jean et al., 2011; Roberts and Hope, 2003). More than 
routine washing of berries therefore may be necessary to obtain effective 
inactivation of viruses by pulsed light. 

In the present study, inactivation of HAV and MNV-1 was inconsis-
tent on blackberries in comparison with strawberries and raspberries. 
This may be due to surface characteristics. Blackberry drupelets are 
loose and large compared to those of raspberries (Caballero et al., 2016) 
whereas strawberries have a continuous non-drupelet structure. This 
made blackberries not only more difficult to cover with the viral sus-
pension, but also more apt to provide adherent virus with spaces not 
exposed directly to the lamp. Food matrices having structures that 
provide such shading therefore might be poor candidates for disinfection 
by pulsed light. Differences in berry surface hydrophobicity could add 
variability to the results obtained using diluted aqueous suspensions of 

test virus. Finally, additional elution buffer could be evaluated as it may 
have impacted viral recovery (e.g. TGBE pH 9; Dubois et al., 2002). 

Our results suggest that pulsed light could be used to inactivate 
foodborne viruses on some (strawberry and raspberry) but not all 
berries. We have suggested previously that the inactivating mechanism 
of pulsed light on viruses acts by disrupting the capsid structure and 
degrading viral proteins and RNA (Vimont et al., 2015). In its current 
state, pulsed light technology does not appear to be difficult to imple-
ment on conventional berry conveyors. Although the inactivation ob-
tained in the present study (~2 log) might be considered modest, it 
could be combined with routine inactivation methods to reduce sub-
stantially the overall microbiological risk associated with delicate 
berries. In the case of fresh strawberries and raspberries, this would be 
achieved with no negative impact on texture, color, overall appearance, 
or product weight. At least these foods could be taken off the list of 
frequent contributors to foodborne disease and the associated world-
wide economic burden and healthcare costs. 
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